Что будет если подключить диодный мост к трансформатору!?-Пояснение опыта.

Как-то давно попалось видео с заголовком: «Что будет если подключить диодный мост к трансформатору!? — Опыт». Посмотреть можно здесь. Для меня ответ на вопрос был очевиден сразу, я думаю, для многих тоже, наверное потому и комментарии к видео отключены, видимо в основном были нецензурные.

Прошло время, я уже и забыл. Но в интернете еще несколько раз попадались схемы, затрагивающие подобную тематику. Например, такие:

Однако я не встретил ни одного внятного пояснения затронутых в этой теме процессов. Или потому, что всем все очевидно и ясно, или по другим причинам. Но просмотры на видео, с которого я начал, давно превысили миллион.

Почему я считаю эту тему интересной? Потому, что после двухполупериодного выпрямления напряжение становится пульсирующим и его частота, по сравнению с частотой сети, повышается в два раза и становится равной 100 Гц.

Как известно, при расчете габаритной мощности трансформаторов частота входит в числитель. Вот пример формулы:

Габаритная мощность трансформатора, в ваттах, на конкретно выбранном сердечнике определяется по формуле:

Это говорит о том, что, повысив частоту в 2 раза мы можем на том же сердечнике что для 50 Гц изготовить трансформатор в два раза большей мощности. Представляете, сварочный трансформатор на частоте 50 Гц весит, например, 20 кг,  а на частоте 100 Гц будет в 2 раза меньше, всего 10 кг. Выгодно, не правда ли?

Так почему же это не делают?

Ниже на рисунке показаны напряжения на входе и выходе двухполупериодного выпрямителя:

Рассмотрим эти графики подробнее:

Верхний график, это напряжение в сети. Его частота 50 Гц, период (Т) 20 мс. Есть положительная “+” и отрицательная “–“ полуволна. Они компенсируют друг друга и постоянная составляющая равна 0 (зеленая линия).

Нижний график, после двухполупериодного выпрямителя отрицательная полуволна перевернута вверх, она стала такая же, как и положительная из-за чего период (Т) уменьшился в 2 раза стал равен 10мс. Соответственно частота 100 Гц. Поскольку теперь положительная и отрицательная полуволна не компенсируют друг друга, постоянная составляющая (зеленая линия) на уровне около 0,707 от амплитудного значения, т.е. равна действующему значению напряжения.

Что же будет с сердечником трансформатора при подаче на него напряжения как на верхнем графике и на нижнем?

Ток через обмотку трансформатора в первом случае (верхний график) в течение периода меняет свое направление и сердечник перемагничивается. Индуктивное сопротивление обмотки равно:

ХL = R + 2πfL

Где: Rактивное, омическое сопротивление провода обмотки

      2πfL  реактивное (индуктивное) сопротивление обмотки.

При ненамагниченном сердечнике основное сопротивление носит индуктивный характер, именно оно определяет величину тока через обмотку. Активное сопротивление, это сопротивление провода, оно вносит потери и снижает КПД.

Во втором случае (нижний график), когда есть постоянная составляющая тока, она намагничивает сердечник. Диполи один раз развернулись вдоль магнитных линий и застыли. Они не поворачиваются туда-сюда, и как в первом случае. По этой причине индуктивное сопротивление обмотки становится малым, практически нулевым, как вроде обмотка без сердечника. Величину тока в основном определяет омическое сопротивление обмотки R, которое в разы меньше индуктивного. Из-а чего ток растет до недопустимых значений и провод обмотки перегорит. Естественно трансформатор не может выполнять свои функции.

Но тема актуальна и народ не теряет к ней интерес.

Самое простое, что можно сделать, отсечь постоянную составляющую при помощи конденсатора, как показано на этой схеме:

Недостаток в том, что для перезаряда конденсатора нужен резистор R. Его мощность соизмерима с мощностью нагрузки, это понижает КПД схемы настолько, что смысл теряется.

Есть патенты на данную тему. Например, такой:

Двухполупериодный выпрямитель со средней точкой на двух диодах 5 и 6. С целью компенсации постоянной составляющей на сердечнике размещена дополнительная обмотка 3 с формирователем на элементах 8,9,10,11. Но это эффективно на более высоких частотах и небольших мощностях.

Есть еще такие удвоители частоты, где используется сдвиг фаз на 90 град.

Но опять же, это для небольших мощностей и более высоких частот.

Так что на сегодня самым реальным методом уменьшения габаритов источников питания является выпрямление напряжения сети, а затем питание от этого постоянного напряжения генераторов и мощных оконечных усилителей. Эти устройства работают на частотах десятков килогерц и трансформаторы выполняют на ферритах или сердечниках из распыленного железа с распределенным магнитным зазором. Именно так делают импульсные блоки питания и сварочные инверторы.

Материал статьи продублирован ан видео:

 

 

Оставьте комментарий